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Abstract—Based on the reciprocity theorem, the reaction
concept in electromagnetic theory is generalized to the cases where
both surface electric and magnetic currents overlap across bound-
aries, i.e., neither theE-field, nor H-field meets the continuity
conditions. An improved systematic method is then developed to
obtain unrestricted variational expressions in a cavity resonator
for which the tangential components of the trial fields can be
discontinuous across its interior boundaries.

Index Terms—Bilinear form, cavity resonators, dielectric
resonators, eigenvalue problem, mode-matching method, reaction,
variational formulation.

I. INTRODUCTION

CAVITY resonators have been of wide-ranging use in
microwave engineering and are fundamental building

blocks of filters, multiplexers, and oscillators. Miniaturization
and characteristic stabilization of these resonators can be
achieved by loading the cavity with high-dielectric constant
ceramics and making the so-called dielectric resonators (DRs)
[1]–[3]. Obtaining cavity modes and resonant frequencies,
which are essential in designing DR structures, are usually
very complicated and time consuming. Various methods have
been developed for these purposes [4]. Among them, the
mode-matching method is the most widely used one [4]–[6].
For many applications, the resonant frequency should be
calculated with less than 1% error. This, however, cannot be
achieved by choosing only a few number of modes. On the
other hand, including a large number of modes in the analysis
makes the process very slow.

The strong motivation behind this theoretical work is to ex-
plore the possibility of increasing the accuracy of the calcula-
tion of resonant frequency by using variational expressions in
the mode-matching method.
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Variational methods are well established in physical and engi-
neering problems with solid foundations in physics and mathe-
matics. The importance of eigenvalue theory in pure and applied
mathematics, and in physics and their approximate calculations
and the fact that variational methods are well adapted to succes-
sive approximation methods make this approach the very cen-
tral fields of analysis. The applicability of this method depends
on the availability of variational formulas. Variational schemes
used in the analysis of DRs are addressed in [4] and [7]. Fur-
ther, the reader may find a good review on variational methods
in electromagnetic theory in [8, Ch. 5].

Based on the concept of reaction, which is defined by Rumsey
[9], Harrington, in an excellent chapter, developed a systematic
method for obtaining variational expressions for resonant fre-
quencies of cavity resonators [10, pp. 340–345]. However, by
the nature of development, one cannot handle the case where
both trial electric and magnetic fields do not meet the conti-
nuity conditions across some boundaries inside the cavity. In
this sense, even the most general form of the variational expres-
sions obtained by using Harrington’s approach arerestricted.
On the other hand, one should note that the fields obtained by
the mode-matching method do not satisfy the restrictions set
forth by Harrington’s approach. More precisely, neither tangen-
tial components of the electric field, nor magnetic field obtained
by using a finite number of modes satisfy the continuity condi-
tions across the boundaries inside the cavity where the fields are
enforced to match. Therefore, one needs stationary expressions
that relax the boundary conditions of at least electric or magnetic
field across the boundaries inside the cavity. In a classic paper,
Berk tried to expand the class of trial fields to include discontin-
uous tangential electric and magnetic fields in a lossless cavity.
However, the formula given by him is not correct [11, p. 105].

To make the class of trial fields unrestricted in the Har-
rington’s approach, one should extend the reaction concept to
the cases where both electric and magnetic surface currents
coincide. In Section II, by using the reciprocity theorem, we
will generalize the reaction concept in this sense. As will be
shown, because of the discontinuity of tangential components
of both electric and magnetic fields, the generalized reaction
is not unique. However, it reduces to those conventional ones
if at least the electric or magnetic field satisfies the boundary
conditions at any interface inside the cavity. In Section III, after
clarifying Harrington’s approach, we will set up the machinery
for developing unrestricted variational expressions inside
cavity resonators. This improved systematic method is based
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Fig. 1. Arbitrary cavity resonator.

on the degenerate or singular character (to be defined later)
of the reaction in cavity resonators. This method is slightly
different than Harrington’s approach and is more meaningful.
Since this systematic method is based on the generalized
reaction, the variational expressions obtained on this basis are
not unique. However, under special cases, i.e., restricted fields,
they reduce to those given by Harrington. Section IV is devoted
to numerical results and discussion. Finally, conclusions are
summarized in Section V.

We have demonstrated that when a field obtained by the
mode-matching method is used as a trial one in a particular
form of the variational expressions, the resonant frequency
does not change [12]. This behavior states that this solution
is a stationary point of a variational expression and should
be expected since the mode-matching method is equivalent
to the Galerkin approach. We are then led to the generalize
mode-matching method to nonorthogonal and free-boundary
cases where a set of basis functions used for the field expansion
inside a cavity resonator do not have to be orthogonal or satisfy
any specific boundary condition. Details of this exploration is
given in Part II of this paper [12].

II. GENERALIZED REACTION

Consider a cavity resonator bounded partly by a perfect elec-
tric conductor and partly by a perfect magnetic conductor, as
illustrated in Fig. 1. For simplicity, we assume that the interior
region of the cavity contains two homogeneous materials as il-
lustrated. Moreover, assume that a part of the interface between
the two media is partly covered by a perfect electric conductor
and partly by a perfect magnetic conductor. Let and

be two arbitrary sets of vector fields defined inside the
cavity, which do not necessarily satisfy the boundary conditions
within the cavity or on its walls. One may associate the electro-
magnetic fields and , operating at a frequency, with each
set of vector fields, respectively, by finding some source that
would generate the assumed field distributions. Each associated
electromagnetic field is supported in part by volume sources,

which can be found by vector operators acting on the assumed
field distributions as

(1)

(2)

The rest of the sources are of surface type, which are necessary
to support the boundary conditions within the cavity or on its
walls. Before considering these sources, we apply the standard
procedure used in the derivation of the reciprocity theorem [10,
pp. 116–118] to get

(3)

(4)

where , , and are
parts of the interior boundary made of perfect electric and per-
fect magnetic conductors, respectively. is just the interface
between the two dielectric materials and and , respec-
tively, are parts of the cavity walls made of perfect electric and
perfect magnetic conductors.

Now if for , one should place
the magnetic surface currents on

immediately inside region 1 and on
immediately inside region 2. The outer surfacecan be

treated in the same way, whereas and must be treated
in a dual fashion. Of particular importance is the surface. To
support the discontinuities of the tangential components of
and , both electric and magnetic surface currents must be
added to this surface, i.e., and

, respectively.
The final form of the generalized reaction can be obtained

by adding both sides of (3) and (4) and transforming the
integrand of each surface integral to the dot products of
the fields and surface currents. This is not new as far as
the surfaces and are concerned. For ex-
ample, and

and so on.
However, the surface integral over cannot be treated in this
simple way if the tangential components of and or
and are discontinuous on . More precisely, by adding the
right-hand sides of (3) and (4), the surface integral overwill
be of the following form:

(5)

On the other hand, the electric and magnetic surface currents
that support the discontinuities of theand -field systems on
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are and

, respectively. Now it becomes clear that because of
the discontinuity of the tangential components of the fields on

, the integrand in (5) cannot be easily converted to the dot
products of the fields with and . Despite this fact, by

proper definition of and on , we try to write (5) in
the following form:

(6)

Since we have assumed that the tangential components of
and are discontinuous on and are as yet ar-
bitrary on this surface and we may define them in such a way
that (6) reduces to (5). At first, it seems natural to define
and on as averages of the fields on both sides of.
However, as will be shown shortly, we can proceed even more
general than that. Let us define and on as linear
combinations of the fields on both sides of as follows:

(7)

(8)

where each coefficient is considered as a function of, the char-
acterizing parameter of the surface. The above coefficients
are not independent and the relation between them can be ob-
tained by substituting (7) and (8) into (6), and then equating
the resulting integral with (5). However, before doing that, we
can obtain the relations between and or and

by a simple reasoning. More specifically, under special
cases where the tangential components of the-field are con-
tinuous on , we should have

A similar relation also holds for the magnetic field if the tan-
gential components of the -field are continuous on . Such
relations require that

(9)

(10)

Aswillbeexplained later, (9)and(10)arealsorequired forsource
conservation. To obtain (9) and (10) more rigorously, we substi-
tute (7) and (8) into (6) and express the surface currents in terms
of the fields. After simple algebraic manipulations, we get

(11)

On comparison of (11) with (5), ’s and ’s should satisfy the

following relations:

(12)

(13)

Using (12) and (13), one may come up with (9) and (10), which
have been obtained earlier by an intuitive way. Now (7) and (8)
can be written as

(14)

(15)

where . According to (14) and (15),
on are defined as aquasi-convexcombination of
and . In contrast to convex combination, is not
required to satisfy . Therefore, we use the term
“quasi.” By defining and on by (14) and (15),
(5) can be written in the same form as (6). Note that defining

and on by averages of the fields on both sides of
can be considered as a special case of (14) and (15) with

. An interesting interpretation of (9) and (10) can
be given by substituting (14) and (15) into (6). To this end, (6)
reduces to

(16)

Equation (16) means that instead of defining the fields on the
surface of the discontinuity, one may divide the surface currents
between the two regions and take the dot products of the fields
on each side of that surface with the corresponding sources.
Thus, (9) and (10) are just based on the conservation of sources.
Now if one uses (14) and (15) in (6), one can obtain the general
form of the reaction by adding (3) and (4) and substituting (5)
by (6). More precisely, by adding (3) and (4) and rearranging
the terms, one may write

(17)

where

(18)
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and are defined by (14) and (15), respectively, and
can be obtained from by interchanging the su-

perscripts and in (18). is called the reaction of field
on field . It should be emphasized that unlike the cases that

have been treated in the literature, the generalized reaction is
not unique and it depends on , which can be defined arbi-
trarily on any surface like inside the cavity. However, it will
be independent of if at least the electric or magnetic fields
of both of the field systems meet the continuity conditions on

and reduces to those conventional ones in the literature. It
should also be noted that if region 2 in Fig. 1 is unbounded and
both - and -field systems satisfy the radiation conditions, (17)
without any surface integral over and is also valid.

We have defined -field and -field by assuming the - and
-field distribution within the cavity and, since according to

(1) and (2), the volume sources are expressed in terms of these
fields, the reaction can also be expressed in terms of these as-
sumed field distributions and (17) is, in fact, an identity between
two sets of arbitrary vector fields and the assumed frequency. It
is also possible to set up an electromagnetic field by assuming
only electric-field distribution or only magnetic-field distribu-
tion within the cavity. In the former case, by setting
in (1), the -field can be obtained in terms of the assumed

-field distribution and, therefore, by using (2), can also
be expressed in terms of the-field. This means that the reac-
tion can be expressed in terms of the assumed frequency and

-field distribution. For setting up an electromagnetic field by
assuming only magnetic-field distribution within the cavity, we
set in (2) and proceed in a dual fashion. For a special
case where the assumed field distributions are not supported by
any volume sources, (17) reduces to an identity between the two
defined vector fields within the cavity. These facts will be ex-
plored in more details later when we obtain various variational
formulas.

For future reference, we consider the important case where
the -field is one of the resonant modes of the cavity illus-
trated in Fig. 1. Let us denote this correct resonant field by
and reserve for the approximate field, which is also defined at
the same resonant frequency. Since the correct resonant field is
source free, we have and, according to (17), we end
up with the following important relation:

(19)

It should be noted that since the-field satisfies all boundary
conditions, the second term in (19) is independent of. Conse-
quently, the first term is also independent of(as it should be).

Equation (19) plays a key role in our discussion and is the
fundamental relation that we will use later to derive unrestricted
variational formulas.

In summary, in this section, we have derived the most gen-
eral form of the reaction in which the tangential components of
both electric and magnetic fields can be discontinuous across
some interfaces. Recall that the generalized reaction defined in
this section is not unique. As will be shown later, this fact can
be exploited to obtain various unrestricted variational formulas
inside cavity resonators.

III. B ASIC FORMULATION

In Section II, it has been explained how to set up an electro-
magnetic field operating at an arbitrary frequency from a given
arbitrary field distribution within a cavity. For a given , the
class of such electromagnetic fields operating at a specific fre-
quency is a linear space.

The so-called reaction originally defined by Rumsey [9] is a
physical observable. This observable and its more general form
defined in (18) has the mathematical structure of asymmetric
bilinear form in an infinite-dimensional linear space of electro-
magnetic fields defined at a specific frequency within a cavity
[13, p. 367]. In addition, reaction isdegenerate(or singular) in
the linear space of the electromagnetic fields defined at anyreso-
nantfrequency within a cavity [13, p. 365]. By “degenerate” (or
“singular”), we mean that there exits at least a nonzero element
in the linear space of electromagnetic fields defined at some res-
onant frequency within a cavity resonator such that its reac-
tion on all other electromagnetic fields defined at the same res-
onant frequency within that cavity is zero. Equation (19) states
that the exact resonant fieldis, in fact, such an element. In the
literature, it is common to use a bracket for the inner product.
Therefore, its use to express the reaction that is a bilinear form
and mathematically is more general than the inner product is not
proper and sometimes is confusing. However, since historically
this notation was used for the reaction and it also appears in the
literature, we use the same notation to represent it.

Despite the fact that reaction is not an inner product and one
cannot define any norm or angle, it is useful to extend the con-
cept of orthogonality as follows.

Definition: Two electromagnetic-field systemsand de-
fined at the same frequency are called orthogonal in the reaction
sense if

Rumsey used the reaction concept to obtain approximate for-
mulas for scattering coefficients, transmission coefficients, and
aperture impedance by enforcing the approximate field, and
the correct field look the same to an arbitrary available test
field in the reaction sense, i.e., , where
denotes the conventional reaction [9]. As a special case, one
may consider the approximate field as a test function and, there-
fore, one may enforce . Similarly, if one ex-
presses the approximate field as a linear combination of

, one may also consider as a test function and
enforce . Since reaction is a
bilinear form, the latter equality implies . More-
over, all the above constraints can be considered as enforcing
the error field to be orthogonal to the available test functions in
the reaction sense. More precisely, let be the error
field. and

are then equivalent to and
, respectively. It should be em-

phasized that orthogonality of the error field to the available test
functions in the reaction sense does not imply least square ap-
proximation because no norm is defined by the reaction.
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As mentioned above, the condition means
, which indicates that is perpendicular to in the

reaction sense. Since and the reaction is a bilinear
form, one may write , which can be
interpreted as Pythagoras’ theorem in the reaction. According to
Pythagoras’ theorem, one may write
or

(20)

Equation (20) proves the stationary character of

about . In fact, by defining for a fixed ,
we have . Therefore, .

In dealing with cavity resonators, letbe an arbitrary elec-
tromagnetic field defined at the resonant frequency associated
with a correct resonant field. According to the reciprocity the-
orem, therefore, we have , which also reflects the de-
generate character of the reaction. Using this fact and enforcing
the condition , in an excellent chapter on vari-
ational techniques [10, Ch. 7], Harrington develops a system-
atic method for variational formulation of resonant frequency
by setting . According to (20) and Harrington’s rea-
soning, is stationary about the correct resonant fieldif

. Therefore, by setting , Har-
rington defines as a function of the field distribution setting
up and by using the stationary character of about , he
proves is stationary about the correct resonant field.

In our improved systematic method, we claim that and
its generalized form is stationary about according to
the following lemma.

Fundamental Lemma:Let be an arbitrary, but fixed elec-
tromagnetic field defined at some resonant frequency of a cavity
resonator and be the corresponding exact resonant field. More-
over, assume that the approximate fieldis defined as

. The function
is then stationary about .

Proof: Since reaction is degenerate and bilinear,is or-
thogonal to . Therefore, according to Pythagoras’ theorem and,
again, bilinear character of the reaction, we have

The above relation indicates that is stationary about.
Let us see how based on the above lemma one may develop

variational formulas for a cavity resonator. To this end, assume
that for a fixed error field defined at the resonant
frequency and define as follows:

(21)

From the above equation, we have and for nonzero
values of . On the other hand, one may write

, where is the resonant frequency of the
cavity associated with. Therefore, according to (21), one may
write

(22)

Equation (22) is the key result for developing variational for-
mulas for the resonant frequency. More precisely, let us define

as a function of by an implicit relation

(23)

where is an arbitrary constant. Since we should have
and , the only permissible value

of is zero. Otherwise, and the second equality
in (22) does not hold. Moreover, since for nonzero values of

, setting in (23) guarantees that
the frequency obtained for any nonzero value ofis different
than the resonant frequency. Now

(24)

Since , according to (22),
and noting that, in general,

, we have

(25)

which states that defined by (23) with is stationary
about .

From the above considerations, one may end up with the fol-
lowing lemma.

Lemma 1: Let be an arbitrary electromagnetic field defined
at the resonant frequency inside a cavity resonator associated
with assumed -field, -field, or mixed field ( and ) distri-
bution within the cavity. By setting and changing

to , one may then define as a function of the associ-
ated vector field(s), which is stationary about the correct reso-
nant field .

The key idea is that is a function of the assumed field
distributions setting up at the resonant frequency , and
changing the role of to does not imply that is defined
at some frequency other than . Otherwise, the fundamental
lemma (in our approach) will be invalid and the condition

(in Harrington’s approach) is meaningless. In
practice, one may skip the step of replacing with in

and set as if is defined at the frequency
. Note that unless .
Except generalized reaction, Lemma 1 is in accordance with

Harrington’s formulation. However, we have proven it based on
the fundamental lemma. Developing generalized reaction and
fundamental lemma are the distinguishing features of this paper
from Harrington’s earlier work. The importance of the funda-
mental lemma will be clear later when we use it to generalize
conventional mode-matching method discussed in Part II of this
paper [12].

In the so-called - and -field formulation, Harrington
obtains in terms of the assumed- and -field distri-
butions, respectively. Whereas in the mixed-field formulation

is obtained in terms of both- and -field distributions.
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In either case, one may show that if for a fixed
defined at the resonant frequency, we have

(26)

where for - or -field formulation and for
mixed-field formulation. and are energy-type inte-
grals and will be defined later. In either case, we have

(27)

or

(28)

On the other hand, . Therefore,

(29)

By using (26), if one defines , we
have and

(30)

Now one may easily show that .
This fact can be argued by noting that, from (28) and
(29), we have and, there-
fore, , which means that

. This result is expected and we have
just used a more straightforward way to prove the stationary
character of about , which was proven earlier
by considering a more general case. Recall that, according
to the general case, by taking the derivative of the implicit
relation at , we will have

or
. Using (27)

and noting that, in general, , we have .
Note that and are defined based on the conven-

tional reaction. Explicit relations for and and their
generalized forms and will be given later when we
derive unrestricted variational formulas of the cavity resonator
shown in Fig. 1.

The Rayleigh–Ritz approach is a powerful method, which
usually comes with the variational formulation. Harrington, by
using the stationary character of , in a typical example
[10, pp. 339–340] tries to apply the Rayleigh–Ritz method in a
cavity resonator by considering only two basis functions for the
field expansion. Due to the quadratic nature of the equations, the
unknown expansion coefficients and resonant frequencies are
obtained by solving a system of nonlinear equations. Of course,
this approach cannot be used if one expands the fields in terms
of more than two basis functions. However, (27) is a derivative
of a quadratic equation, which leads to a system of linear equa-
tions and is more suitable for the Rayleigh–Ritz approach. More
precisely, let , where ’s are the unknown
expansion coefficients. Assume that one of these coefficients,

e.g., is changed to . Therefore, the correct field re-
duces to the approximate fieldsuch that . Treating

as an error field, one may see that (26) and (27) imply

(31)

where we have used .
Moreover, as indicated in (31), is obtained from by
replacing and/or with and/or , respectively. The
condition
or its equivalent im-
plies . Using the sym-
metric character of the reaction, one may end up with

or

(32)

which leads to a system of homogeneous linear equa-
tions for the unknown expansion coefficients ’s.
From the above considerations, one may end up with
two different, but equivalent approaches in setting up a
system of homogeneous linear equations in ’s. In
the first approach the linear equations are of the form

, whereas in the second
one, we have .
However, the former enjoys the advantage that it eliminates the
need of finding the sources of ’s. The reader may verify the
validity of the above assertions by considering the aforemen-
tioned example treated by Harrington and applying (31) or (32)
to obtain the unknown expansion coefficients and the resonant
frequencies by a matrix equation. The resonant frequencies
can be obtained by seeking the zeros of the determinant of the
coefficient matrix.

The above are the fundamental principles of variational for-
mulation in cavity resonators. The restrictions set forth on the
class of trial fields depend on the generality of the reaction.
The more general the definition of the reaction, the less restric-
tions on the trial fields. Since the reaction defined in the liter-
ature requires at least the tangential components of the elec-
tric or magnetic field be continuous on any interface, the sta-
tionary formulas for the resonant frequency requires at least
or in -field formulation, or in

-field formulation, and or in the mixed-field formula-
tion satisfy the boundary conditions at any interface within the
cavity.

Since we have generalized the reaction that relaxes the above
restrictions, one may expect to obtain unrestricted stationary
formulas for the resonant frequency. Suppose that we are inter-
ested in obtaining the -field variational formula for the reso-
nant frequency in the cavity resonator shown in Fig. 1 without
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any restriction on the trial fields. To this end, assume that
is an arbitrary vector field defined inside the cavity. The elec-
tromagnetic field set up by at the resonant frequency
can be defined as and

. Including the nec-
essary surface currents to support the discontinuities across the
boundaries and using the generalized reaction yield

(33)

where

(34)

(35)

and we have used the identity
. Note that is independent of .

By setting and changing to is de-
fined as a function of by an implicit relation

or explicitly as

(36)

To prove (36) is stationary about the correct resonant field, let
, where is the electric-field distribution of the

correct resonant field and is an arbitrary, but fixed vector
field defined within the cavity. Substituting for into (36), one
may define as a function of as follows:

(37)

where and .
According to the earlier discussions, vanishing the derivative of
(37) at is a sufficient condition for , defined by (36), to
be stationary about the correct resonant field distribution. To
this end, we define the electromagnetic fieldset up by at

as and

. By including the necessary surface
currents to support the discontinuities ofacross the boundaries
and using the generalized reaction, we obtain

(38)

Now and, therefore,
. Moreover, according to the funda-

mental lemma, , which indi-
cates that . Therefore,

and defined by (37) is stationary about
. It should be noted that the stationary character of (36)

can be proven directly by showing that

(39)

To prove (39) directly, one should use the identity
and note that .

An interesting feature of the unrestricted variational formula-
tion of cavity resonators is its dependence on and, in other
words, its nonuniqueness character. As can be read from (34),
the term

depends on and the integrand is propor-
tional to the products of the differences of fields on both sides
of the interface. In fact, by defining ,
where is an arbitrary, but fixed vector field, and noting that
the correct resonant field satisfies the boundary conditions, we
have

. Therefore, for any
, and since is an additive term in , (39)

also holds for any . If or, if the tangential
components of either or is continuous across

vanishes. It is also interesting to note that, in the
-field formulation, as expressed by (36), no surface integral

is present over the surface of a perfect magnetic conductor. As
expected, for restricted field distributions, this generalized vari-
ational formulation reduces to those special ones given by Har-
rington. Strictly speaking, let be an operator when acting
on a surface gives its area. It can be seen that under special cases
where and or
meets the continuity conditions across, the variational for-
mulas reduce to those given by Harrington. Under these special
conditions, and , used in our earlier discussion, will
be the reduced forms of and , respectively.

In a similar fashion, the -field variational formulation of
the cavity resonator shown in Fig. 1 can be obtained without
any restriction on the trial fields. Let be an arbitrary vector
field, which sets up the electromagnetic fieldat the resonant
frequency by and

. By including the
necessary surface currents to support the discontinuities across
the boundaries and obtaining , setting , and
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changing to , the unrestricted variational formula for the
resonant frequency becomes

(40)

where

(41)

(42)

In the -field formulation, as expressed by (40)–(42), no sur-
face integral is present over the surface of a perfect electric con-
ductor, and like the -field formulation, the -field formula-
tion is not unique and depends on . It can also be seen that,
in special restricted cases, the generalized-field formulas re-
duce to those given by Harrington. It is interesting to note that
duality applies to -field and -field formulations of the cavity
shown in Fig. 1. More precisely, the-field formulation can be
obtained from the -field formulation by the following trans-
formations:

In a dual fashion, the -field formulation can be obtained from
the -field formulation by the following transformations:

It should be emphasized that duality does not apply to-field
and -field formulations if the cavity walls or its interior bound-
aries are made of only one type of perfect conductor.

To obtain the mixed-field variational formula, we assume ar-
bitrary vector fields and within the cavity shown in

Fig. 1. These vector fields define the electromagnetic field
at the resonant frequency if one considers

and the
necessary surface currents to support the discontinuities across
the boundaries. Therefore, with this procedure, the generalized
reaction can be obtained in terms of arbitrary vector fields
and as follows:

(43)

where

(44)

(45)

Following the same reasoning used in the- and -field for-
mulations, it can be shown that

(46)

is stationary about the correct resonant field. In this case, by
fixing and and defining

and , it suffices to
show that

(47)

is stationary about .
In this section, based on the degenerate character of general-

ized reaction, we have developed a systematic method for ob-
taining unrestricted variational formulas for cavity resonators
and derived various variational formulas for an arbitrary, but not
simple resonant structure shown in Fig. 1.

IV. NUMERICAL RESULTS

In this section, we apply the formulation developed in the pre-
ceding section to some physical structures. In all formulas, we
set . In the first example, we obtain the approximate
resonant frequencies of a rectangular cavity with a cylindrical
dielectric rod in it. The length of the rod covers the full height
of the cavity with the cross section shown in Fig. 2. We have
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Fig. 2. Cross sections of rectangular and cylindrical cavity resonators with a
cylindrical dielectric rod inside them.

TABLE I
COMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF A

RECTANGULAR CAVITY OBTAINED BY DIFFERENTAPPROXIMATEMETHODS

used the resonant fields of a cylindrical cavity surrounding the
rectangular one as the trial fields. The cross section of the cylin-
drical cavity is also shown in Fig. 2. The results for the ,

, and modes are shown in Table I.
We have also included the simulation results obtained by An-

soft HFSS as a reference. The last two columns show the relative
errors of the cylindrical cavity approximation and the-field
formulation with respect to the HFSS results, respectively.

Since the dielectric rod covers the full height of the cylin-
drical cavity, this cavity becomes a two-dimensional resonator
for the mode, and this mode is the fundamental mode
of the cavity. For this special structure, the cylindrical surface

is equivalent to the surface in the general cavity struc-
ture shown in Fig. 1. However, since the dielectric rod covers the
full height of the cavity, the trial fields obtained by the cylin-
drical cavity approximation meet the continuity conditions on

. Therefore, the surface integral over vanishes. Moreover,
in the -field formulation, as expressed by (40)–(42), no sur-
face integral is present over the surface of a perfect electric con-
ductor and, hence, over the cavity walls shown in Fig. 2. There-
fore, the -field formulation reduces to

where is the frequency obtained by the mode-matching
method in the cylindrical cavity. and are the total electric
and total magnetic energies of the trial fields in the rectangular
cavity, respectively. For all modes, because of the presence of
the dielectric rod of high dielectric constant, the energy stored
in the electric field is highly confined within the rod and only a
few percent of the electric energy is outside of it. However, this

(a)

(b)

Fig. 3. DR with a support inside a: (a) rectangular cavity and (b) cylindrical
cavity.

is not the case for the energy stored in the magnetic field. There-
fore, and . For these three different cases,
the -field formulation gives the best results and the results ob-
tained by the mixed-field formulation are also better than those
obtained by the -field formulation.

In the second example, we have considered a DR with a sup-
port inside a rectangular box. The radius of the support is the
same as that of the resonator. The top view of the resonator
is illustrated in Fig. 3(a). Like the previous example, we have
used the resonant fields of a cylindrical cavity surrounding the
rectangular box as the trial ones. The cross section of the cylin-
drical cavity is shown in Fig. 3(b). The trial fields have been
obtained via the radial mode-matching method [4], [6]. In the
radial mode-matching method, the cylindrical cavity is divided
into two radial parallel-plate waveguides and

. We then expand the fields in terms of the modes
of each section and, by matching the boundary conditions at

, the resonant frequencies and the unknown coefficient
of each mode in the field expansion can be obtained by a matrix
equation.
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TABLE II
VARIOUS DIMENSIONS (IN CENTIMETERS) AND DIELECTRIC CONSTANTS OF A

DR AND A SUPPORTINSIDE A RECTANGULAR CAVITY

TABLE III
COMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF A

SUPPORTEDDR INSIDE A RECTANGULAR CAVITY SHOWN IN FIG. 3
& THAT ARE OBTAINED BY DIFFERENTAPPROXIMATEMETHODS

It should be emphasized that the tangential components of
the electric and magnetic fields obtained by a finite number of
modes in the radial mode-matching method cannot be contin-
uous on the surface . Therefore, this surface is equivalent
to in the general model of the cavity resonator illustrated in
Fig. 1. Similarly, if one uses a finite number of modes in the axial
mode-matching method [4], [5] to obtain the resonant fields of
the cylindrical cavity, the tangential components of the fields
will be discontinuous along the axis of the cavity at and

. Therefore, the conventional restricted variational
formulas cannot be applied in this case and only unrestricted
variational formulas developed in this paper are applicable.

Various dimensions of the cavity and the dielectric constants
of the materials inside it are illustrated in Table II. Unlike the
previous example, the mode is the lowest resonant mode
of this structure. Therefore, we have considered only this mode.

The results for modes are shown in Table III. To obtain
the trial fields, we have used the same number of modes in radial
waveguides and inside the cylindrical
cavity. The number of modes used to obtain the trial fields in
each radial waveguide is also shown in Table III. The frequency
obtained by Ansoft HFSS is 3.5718 GHz and we use it as a
reference. The last two columns show, respectively, the relative
errors of the cylindrical cavity approximation and the-field
formulation with respect to the HFSS result.

As expected, the resonant frequencies obtained by the varia-
tional formulation are more accurate than those obtained by the
cylindrical cavity approximation. Like the previous example,
the -field formulation gives the best results and the results ob-
tained by the mixed-field formulation are also better than those
obtained by the -field formulation.

Other higher order modes like and can be treated
in a similar fashion.

V. CONCLUSION

In this paper, we have developed a systematic method for ob-
taining unrestricted variational expressions in cavity resonators.
The keystone in this development is the generalized reaction and
its degenerate property. Based on this formulation, the trial elec-
tric or magnetic field is not required to satisfy any boundary
conditions inside a cavity. In other words, unlike existing for-
mulas in the literature, the stationary character of the variational

expressions is independent of the behavior of the electric and
magnetic fields inside a cavity. Another distinguishing feature
of this new formulation is its nonuniqueness character, if the tan-
gential components of both electric and magnetic fields are dis-
continuous across some boundaries inside the cavity. All these
formulas reduce to those conventional ones in the literature if at
least the electric or magnetic field satisfies the boundary condi-
tions inside the cavity.

The applicability of the formulas that give the approximate
frequency in terms of the trial fields becomes limited if the
complexity of the structure increases. In such cases, using the
Rayleigh–Ritz method is more practical. Under special cases
where the trial fields are not supported by any volume sources,
the frequency is not present explicitly in the variational for-
mulas. Application of the Rayleigh–Ritz method to a special
form of these so-called implicit formulas with re-
sults in the generalized mode-matching method. In this gener-
alized formulation, one may relax the orthogonality and some
specific boundary conditions that should be met by the basis
functions across some surfaces inside the cavity. Hence, we call
it a nonorthogonal and free-boundary mode-matching method.
The details of this new formulation is addressed in Part II of this
paper [12].
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