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Abstract—Based on the reciprocity theorem, the reaction  Variational methods are well established in physical and engi-
concept in electromagnetic theory is generalized to the cases whereneering problems with solid foundations in physics and mathe-
both surface electric and magnetic currents overlap across bound- yatics The importance of eigenvalue theory in pure and applied
aries, i.e., neither theE-field, nor H-field meets the continuity . . . . . .
conditions. An improved systematic method is then developed to mathematics, and "? p_hy3|cs and their approximate calculations
obtain unrestricted variational expressions in a cavity resonator and the fact that variational methods are well adapted to succes-
for which the tangential components of the trial fields can be sive approximation methods make this approach the very cen-
discontinuous across its interior boundaries. tral fields of analysis. The applicability of this method depends

Index Terms—Bilinear for'rn7 Cavity resonators, dielectric on the a.Va.||ab|||ty Of Variational formulas. Variational SChemeS
resonators, eigenvalue problem, mode-matching method, reaction, used in the analysis of DRs are addressed in [4] and [7]. Fur-
variational formulation. ther, the reader may find a good review on variational methods

in electromagnetic theory in [8, Ch. 5].
I. INTRODUCTION Baseq onthe _concept of reaction, which is defined by Rumse_y
_ ) [9], Harrington, in an excellent chapter, developed a systematic
CA\_/lTY resonators have been of wide-ranging use ifhethod for obtaining variational expressions for resonant fre-
microwave engineering and are fundamental bu”dl%encies of cavity resonators [10, pp. 340—345]. However, by
blocks of filters, multiplexers, and oscillators. Miniaturizationpne nature of development, one cannot handle the case where
and characteristic stabilization of these resonators can §§nh trial electric and magnetic fields do not meet the conti-
achieved by loading the cavity with high-dielectric constan{yity conditions across some boundaries inside the cavity. In
ceramics and making the so-called dielectric resonators (DRgk sense, even the most general form of the variational expres-
[1]-[3]. Obtaining cavity modes and resonant frequencie§ions obtained by using Harrington’s approach rastricted
which are essential in designing DR structures, are usuadhf, the other hand, one should note that the fields obtained by
very complicated and time consuming. Various methods hayg: mode-matching method do not satisfy the restrictions set
been developed for these purposes [4]. Among them, thgth py Harrington’s approach. More precisely, neither tangen-
mode-matching method is the most widely used one [4]-{G]a| components of the electric field, nor magnetic field obtained
For many applications, the resonant frequency should Bg sing a finite number of modes satisfy the continuity condi-
calculated with less than 1% error. This, however, cannot Rgns across the boundaries inside the cavity where the fields are
achieved by choosing only a few number of modes. On thforced to match. Therefore, one needs stationary expressions
other hand, including a large number of modes in the analygig relax the boundary conditions of at least electric or magnetic
makes the process very slow. . _ field across the boundaries inside the cavity. In a classic paper,

The strong motivation behind this theoretical work is t0 &gerk tried to expand the class of trial fields to include discontin-
plore the possibility of increasing the accuracy of the calculgnys tangential electric and magnetic fields in a lossless cavity.
tion of resonant frequency by using variational expressions jifpyever, the formula given by him is not correct [11, p. 105].
the mode-matching method. To make the class of trial fields unrestricted in the Har-

rington’s approach, one should extend the reaction concept to
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which can be found by vector operators acting on the assumed
field distributions as

M
J

= -V x E{} — jwps 2 HY) (1)

a,b
1,2
a,b -V Ha,b o Ea,b 2

1,2 X Hy'o —jwer oy . (2)

The rest of the sources are of surface type, which are necessary
to support the boundary conditions within the cavity or on its
walls. Before considering these sources, we apply the standard
procedure used in the derivation of the reciprocity theorem [10,
pp. 116-118] to get

/ (E‘f-J’{—Hi‘~M’{—E’{-J%+H'{~M‘f)dv
.

1

:/(E’{xHi‘—E%xH'{)-ﬁgds 3)
P

o [ (B5-35-m3 M3 - B} 35 4 B M3 )
Fig. 1. Arbitrary cavity resonator. Vs

- / (Eg x H2 — ES ng) -fgds
on the degenerate or singular character (to be defined later) s
of the reaction in cavity resonators. This method is slightly _ / (Eg x HY — ES x Hg) s ds (4)
different than Harrington’s approach and is more meaningful. b)

Since this systematic method is based on the generalizgferey, = ¥, + %, +%;,S = S. + S,, - X, andy,, are
reaction, the variational expressions obtained on this basis BERts of the interior boundary made of perfect electric and per-
not unique. However, under special cases, i.e., restricted fielggt magnetic conductors, respectivel, is just the interface
they reduce to those given by Harrington. Section 1V is devotggwyeen the two dielectric materials afd and S,,,, respec-

to numerical results and discussion. Finally, conclusions afgely, are parts of the cavity walls made of perfect electric and

summarized in Section V. _ _ ﬁerfect magnetic conductors.
We have demonstrated that when a field obtained by thenow if Ay x E{S(r) # 0forr € X., one should place

mode-matching method is used as a trial one in a parucu{.% magnetic surface currenM’S’"E” _ Eclz,b x (—fix) ON
€1

form of the variational expressions, the resonant frequengﬁ . , o i - wb
does not change [12]. This behavior states that this solution Immediately inside region 1 anbly;’ = E;” x iz on

is a stationary point of a variational expression and shouler immediately inside region 2. The outer surfagecan be
be expected since the mode-matching method is equivalf§@ted in the same way, wheres, andS,,, must be treated
to the Galerkin approach. We are then led to the generalife2 dual fashion. Of particular importance is the surfgeTo
mode-matching method to nonorthogonal and free-bound&yPPort the d|scont|n_U|t|es ofthetapgentlal componenBdf
cases where a set of basis functions used for the field expans¥d H*”, both electric and magnetic surface currents must be
inside a cavity resonator do not have to be orthogonal or satig§jded to this surface, i.eli;’ = ny x (Hy" — H{") and
any specific boundary condition. Details of this exploration ng’in = (ES" — E9") x ag, respectively.
given in Part Il of this paper [12]. The final form of the generalized reaction can be obtained
by adding both sides of (3) and (4) and transforming the
integrand of each surface integral to the dot products of
Il. GENERALIZED REACTION the fields and surface currents. This is not new as far as
) ) the surfacesX:., X,,,S., and S,, are concerned. For ex-
_Con5|deracaV|ty resonator bounded partly l?yaperfectelecg‘hme,f2 E} x H} - nyds = [o Hf - M. ds and
tric conductor and partly by a perfect magnetic conductor,%s EY x HY - fsds = fz,,, B! . 3 s anld o on.

illustrated in Fig. 1. For simplicity, we assume that the interi E’Qv ver th f intearal OVEE cannoi'be treated in thi
region of the cavity contains two homogeneous materials as'i Owever, the surface integral ovef cannot be treate b S
ple way if the tangential componentsi6f andH* or E

lustrated. Moreover, assume that a part of the interface betw&&n b . . , .
the two media is partly covered by a perfect electric conduct dH" are d_|scont|nuous on;. More premsgly, by addmg the
and partly by a perfect magnetic conductor. LEE, H) and right-hand S|de§ of (3) a.nd (4), the surface integral avewill

(Eb, H") be two arbitrary sets of vector fields defined inside h@e of the following form:

cavity, which do not necessarily satisfy the boundary conditiong A " " " “

within the cavity or on its walls. One may associate the electrgéi = /Ei (E? x Hy — E7 X Hl{ - Eg x Hj + B3 X Hg)
magnetic fieldsa andb, operating at a frequency, with each hgds. (5)

set of vector fields, respectively, by finding some source that

would generate the assumed field distributions. Each associaat the other hand, the electric and magnetic surface currents
electromagnetic field is supported in part by volume sourceabat support the discontinuities of theandb-field systems on
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¥ areJ4d = ay x (Hy" — HY®) andM%® = (E5® —  following relations:
E}") x fiy, respectively. Now it becomes clear that because of
— = - = 12
the discontinuity of the tangential components of the fields on a1(0) = B2(0) = Bi(0) = az(0) =0 (12)
¥, the integrand in (5) cannot be easily converted to the dot ai(o) + Pi(o) = az(0) + fa2(0) = (13)

products of the fields witt ¢ b andM¢' b . Despite this fact, by Using (12) and (13), one may come up with () and (10), which
proper definition ofE®: andH“ b on E“ we try to write (5) in  have been obtained earlier by an intuitive way. Now (7) and (8)

the following form: can be written as
[ o= (B m +m oM 4B Byl = o()B + [1-a(@)E" (19
2, 5, i S3; i S, a. a, a,
Hzf’ = [1 - a(o)]HY" + a(o)Hy" (15)

~H ML )ds. (6) N
' ' wherea (o) = a;(o). According to (14) and (15> ”(Ha b)
Since we have assumed that the tangentlal componemg bf on¥; are defined as quasi-convexombination oiE“ (H 0
andH<* are discontinuous oB;, Ex” andHg" are as yetar- andE2’(H2?). In contrast to convex comblnatlon( ) is not
bitrary on this surface and we may define them in such a wagqu"ed to satisfy) < a(o) < 1. Therefore, we use the term
that (6) reduces to (5). At first, it seems natural to defiife’ “quasi.” By definingE®* and H*® on ¥; by (14) and (15),
andH"" on ¥; as averages of the fields on both sideshf (5) can be written in the same form as (6). Note that defining
However, as will be shown shortly, we can proceed even mare-* andH®" on ¥; by averages of the fields on both sides of
general than that. Let us defilg"* andH** on 3; as linear 3:; can be considered as a special case of (14) and (15) with

combinations of the fields on both sidesXf as follows: a(a) = 1/2. An interesting interpretation of (9) and (10) can
o o . be given by substituting (14) and (15) into (6). To this end, (6)
ES! = a1(0)E + ax()E5” (7) reduces to
HY® = f1(0)HT' + fa(0)Hy "
/ / —-Ef - —Eg . [1—04(0)]ng_
where each coefficientis considered as a function, dfie char- ’
acterizing parameter of the surfakk. The above coefficients +H{ - [1-a(o)]M: +HS - a(o)M! ) ds

are not independent and the relation between them can be ob-

tained by substituting (7) and (8) into (6), and then equating +/ (E’{ a(o)Je, +ES- [1_04(0)],]22_
the resulting integral with (5). However, before doing that, we JE; ‘ ’
can obtain the relations between(c) andaz (o) or 31(o) and ~H} - [1-a(0)|M2, —H5 - a(o0)M2 ) ds.
B2(c) by a simple reasoning. More specifically, under special ’ ’

cases where the tangential components offtkfeeld are con- (16)
tinuous onX;, we should have Equation (16) means that instead of defining the fields on the
ab surface of the discontinuity, one may divide the surface currents

E b E] bb E;". . .
iz X =0z X =0z X By between the two regions and take the dot products of the fields

A similar relation also holds for the magnetic field if the tanon each side of that surface with the corresponding sources.
gential components of thH-field are continuous ofX;. Such Thus, (9) and (10) are just based on the conservation of sources.

relations require that Now if one uses (14) and (15) in (6), one can obtain the general
form of the reaction by adding (3) and (4) and substituting (5)
az(0) =1—ai(o) (9) by (6). More precisely, by adding (3) and (4) and rearranging
B2(c) =1 = p1(0). (10) the terms, one may write
Aswillbe explained later, (9) and (10) are also required for source (a,b)a = (b,a)q (17)

conservation. To obtain (9) and (10) more rigorously, we substi-
tute (7) and (8) into (6) and express the surface currents in ter}%@

of the fields. After simple algebraic manipulations, we get (a,b)a A (Efl., Jb _He. M’{)dfu
b b i
/ / 041 ,82 )] (El XH2—E1XH2).nzd8 +/ E" J‘};Em ds—/ H M};EC ds
T Ze !
+/ B1(0)—az(o)] (E§xH —ES x HY ) - iy ds - ., )
JXE; [ ]( ’ ' ’ 1) +/§) (Ezz .J;Ei _Hi)i 'Mlszi)ds
()] (B x HY —E$ < HY ) - iis d ’
+/2 [ea(0)+ ()] (B Hi —Bf xH, ) - s ds +/ (B3 - 35— H3 - M) o
" Va
52(0)] (—ES x Hy + B xH} ) - s ds.
+/27- 2 ()4 Pa(7) | =B > HG 415 xH ) - s +/ o L ds—/ Hy M ds
. 2 =, EQ

(11)

S
a b _ a b
On comparison of (11) with (5)y’s and3’s should satisfy the + /S E5-Jg., ds /S H; - M, ds. (18)
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E§, andHg, are defined by (14) and (15), respectively, and lll. BASIC FORMULATION

(b, a), can be obtained frona, b),, by interchanging the su-

perscriptsz andb in (18). (a, b), is called the reaction of field |, section I, it has been explained how to set up an electro-
a on field b. It should be emphasized that unlike the cases thahgnetic field operating at an arbitrary frequency from a given
have been treated in the literature, the generalized reaCt'O%r'Bitrary field distribution within a cavity. For a giver(c), the

not unique and it depends ei{o), which can be defined arbi- ¢|555 of such electromagnetic fields operating at a specific fre-
trarily on any surface lik&; inside the cavity. However, it will quency is a linear space.

be independent af(o) if at least the electric or magnetic fields The so-called reaction originally defined by Rumsey [9] is a

of both of the field systems meet the continuity conditions 0|5"nysical observable. This observable and its more general form

Y; and reduces to those conventional ones in the literature,,Jf: . - .
v ) ; o X defined in (18) has the mathematical structure sfyenmetric
should also be noted that if region 2 in Fig. 1 is unbounded ag‘l- (18) sy

both db-field svst tisfy the radiati diti 17 inear formin an infinite-dimensional linear space of electro-
otha- andb-field systems satisfy the radiation conditions, ( agnetic fields defined at a specific frequency within a cavity
without any surface integral ovél, and.S,, is also valid.

_ ) i ) [13, p. 367]. In addition, reaction degeneratgor singular) in
We have defined-field andb-field by assuming th&- and e |inear space of the electromagnetic fields defined atesuy

H-field distribution within the cavity and, since_ according t}antfrequency within a cavity [13, p. 365]. By “degenerate” (or
(1) and (2), the volume sources are expressed in terms of the§Rgular), we mean that there exits at least a nonzero element
fields, the reaction can also be expressed in terms of theseiasne linear space of electromagnetic fields defined at some res-
sumed field distributions and (17) is, in fact, an identity betweeshant frequency, within a cavity resonator such that its reac-
two sets of arbitrary vector fields and the assumed frequency;iti, on all other electromagnetic fields defined at the same res-
is also possible to set up an electromagnetic field by assumiggant frequency within that cavity is zero. Equation (19) states
only electric-field distribution or only magnetic-field distribu-ihat the exact resonant fietds. in fact. such an element. In the

. . . . . (I,,b _ . o ’ ’ ] .

tion within the cavity. In the former case, by settiMji, = 0 jiterature, it is common to use a bracket for the inner product.

in (1), the H-field can be obtained in terms of the assumegiherefore, its use to express the reaction that is a bilinear form

- . . . . (l7b X i i .
E-field distribution and, therefore, by using (2),, can also 434 mathematically is more general than the inner product is not

be expressed in terms of thfield. This means that the reac-proper and sometimes is confusing. However, since historically
tion can be expressed in terms of the assumed frequency gid notation was used for the reaction and it also appears in the
E-field distribution. For setting up an electromagnetic field byiarature. we use the same notation to represent it.

assuming only magnetic-field distribution within the cavity, we Despite the fact that reaction is not an inner product and one

a7b o . . . . N L
setJ;; = 01in (2) and proceed in a dual fashion. For a specighnnot define any norm or angle, it is useful to extend the con-
case where the assumed field distributions are not supported-Ryt of orthogonality as follows.

any volume sources, (17) reduces to an identity between the tWeyefinition: Two electromagnetic-field systemsandb de-

defined vector fields within the cavity. These facts will be exqneq at the same frequency are called orthogonal in the reaction
plored in more details later when we obtain various variationghnse if

formulas.

For future reference, we consider the important case where
the b-field is one of the resonant modes of the cavity illus-
trated in Fig. 1. Let us denote this correct resonant fiela: by
and reserve for the approximate field, which is also defined at Rumsey used the reaction concept to obtain approximate for-
the same resonant frequency. Since the correct resonant fielfhigas for scattering coefficients, transmission coefficients, and

source free, we hav@, c),, = 0 and, according to (17), we end@perture impedance by enforcing the approximate #¢lend
up with the following important relation: the correct fieldc look the same to an arbitrary available test
field t in the reaction sense, i.dt,a) = (t,c), where(.,")
denotes the conventional reaction [9]. As a special case, one
may consider the approximate field as a test function and, there-
fore, one may enforcéa,a) = (a,c). Similarly, if one ex-
It should be noted that since thefield satisfies all boundary presses the approximate field as a linear combination,df =
conditions, the second term in (19) is independent.donse- 1,2,...,N), one may also consider; as a test function and
quently, the first term is also independentofas it should be). enforce(v;,a) = (v;,c), (¢ = 1,2,..., N). Since reaction is a
Equation (19) plays a key role in our discussion and is th@linear form, the latter equality implieg, a) = (a, c). More-
fundamental relation that we will use later to derive unrestrictéyer, all the above constraints can be considered as enforcing
variational formulas. the error field to be orthogonal to the available test functions in
In summary, in this section, we have derived the most getie reaction sense. More precisely,é@té a — c be the error
eral form of the reaction in which the tangential components 6éld. (t,a) = (t,c), (a,a) = (a,c) and(v;,a) = (v;,c), (i =
both electric and magnetic fields can be discontinuous acrdsg, ..., N) are then equivalentt@,e,) = 0, (a,e,) = 0,and
some interfaces. Recall that the generalized reaction definedw, e,) = 0, (i = 1,2,..., N), respectively. It should be em-
this section is not unique. As will be shown later, this fact cgphasized that orthogonality of the error field to the available test
be exploited to obtain various unrestricted variational formuldisnctions in the reaction sense does not imply least square ap-
inside cavity resonators. proximation because no norm is defined by the reaction.

(a,b)o = (b,a), = 0.

<a7 C>0/ = <C7a>(¥ =0. (19)
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As mentioned above, the conditigqa,a) = (a,c) means Equation (22) is the key result for developing variational for-
(a,e,) = 0, which indicates that, is perpendicular ta in the mulas for the resonant frequency. More precisely, let us define
reaction sense. Sinee= a — e, and the reaction is a bilinearw,, as a function op by an implicit relation
form, one may writgc, c) = (a,a) + (e, e,), which can be
interpreted as Pythagoras’ theorem in the reaction. According to Fowa(p),p] =k (23)
Pythagoras’ theorem, one may writg a) = (c,c) — (e,, e,)

or wherek is an arbitrary constant. Since we should hay€0) =

wr and F, (w,,0) = fo(0) = 0, the only permissible value
(C+ ea,c+ea) = (C,C) — (ea,eq). (20) Of k is zero. Otherwisey,(0) # w, and the second equality

in (22) does not hold. Moreover, since for nonzero values of
Equation (20) proves the stationary charactdicof e,, c+e,)  p, fo(p) = Fu(w,,p) # 0, settingk = 0in (23) guarantees that
aboutc. In fact, by definingf (p) 2 (c+pe, c+pe) forafixede, the frequency obtained for any nonzero valuga$ different
we havef(p) = (c, c) — p*(e, e). Therefore(df /dp),—o = 0. than the resonant frequency. Now

In dealing with cavity resonators, latbe an arbitrary elec- .
tromagnetic field defined at the resonant frequency associa 6{&) =0= (gFa d:;—a>
Wa ap
orem, therefore, we hay@, c) = 0, which also reflects the de- = (0 e
+

with a correct resonant field According to the reciprocity the- dp
generate character of the reaction. Using this fact and enforcing aF‘*) . (24)
the condition{a,a) = (a,c), in an excellent chapter on vari- Op wa=wa (0),p=0
ational techniques [10, Ch. 7], Harrington develops a system- ,
atic method for variational formulation of resonant frequencyiNc®  @a(0) = wp, according to  (22),
by setting(a, a) = 0. According to (20) and Harrington’s rea-(94a/9P)u.=w.(0)p=0 = 0 and noting that, in general,
soning,(a, a) is stationary about the correct resonant fiell 0£a/dwa # 0, we have
(a,a) = (a,c) = 0. Therefore, by settinga,a) = 0, Har- (dw )

@ — 0

p=0

rington definesv as a function of the field distribution setting — (25)
up a and by using the stationary characterfafa) aboutc, he dp
provesw is stationary about the correct resonant field.

In our improved systematic method, we claim tiata) and
its generalized forma, a),, is stationary about according to
the following lemma.

Fundamental Lemmalet e be an arbitrary, but fixed elec- ) : e )
tromagnetic field defined at some resonant frequency of a cavit emma 1: Leta be an arbitrary eleciromagnetic field defined

resonator and be the corresponding exact resonant field. Mor@-.ttne resona;at ';reﬁjui??‘ :33lde a cac\jn;y Ir((jesonatgquasds.otc!ated
over, assume that the approximate fields defined asa = with assumedt-field, H-field, or mixed field { andH) distri-

¢ + pe. The functionf. (p) = (a,a)e = (c + pe, c + pe)a bution within the cavity. By _settinga, a), =0 and changing_
is then stationary about = 0. ’ ’ w, 10wy, one may then_ de_flmia(I as a function of the associ-
Proof: Since reaction is degenerate and bilingaris or- ated v_ector field(s), which is stationary about the correct reso-

thogonal tac. Therefore, according to Pythagoras’ theorem anaf”mt f'eldc'. . . . .

again, bilinear character of the reaction, we have .The k.ey idea IS thab, is a function of the assumed field
distributions setting ug at the resonant frequenay,., and

(a,a), = (c+ pe,c+pe) = (c,c)n + p?le, e)n. changing the role of,. to w, does not imply tha is defined

at some frequency other than. Otherwise, the fundamental

The above relation indicates that a), is stationary about[]  omm (in our approach) will be invalid and the condition

L_et_us see how based on the above lemma one may deve QPa) = (a,c) (in Harrington’s approach) is meaningless. In
variational formulas for a cavity resonator. To this end, assu actice. one may skip the step of replacing with w, in

thata = ¢ + pe for a fixed error fielde defined at the resonant (a,a), and set(a,a), = 0 as ifa is defined at the frequency
frequency and defing, (p) as follows: o Note thatw # o unlessa — o

A Except generalized reaction, Lemma 1 is in accordance with
fa(p) = (a,a)a ) , : .

B 9 Harrington’s formulation. However, we have proven it based on
= <‘;"fc>a +(c,pe)a + (pe,cla +p7(e, €)a the fundamental lemma. Developing generalized reaction and
=p~(e,e)a. (21) fundamental lemma are the distinguishing features of this paper

From the above equation, we hafig(0) = 0 and for nonzero :;%rgt;?;rgggn Slle&r I'é';;;vrolgf{'e-rrhi'er:poétagze.tizthirflé?:l?'e
values ofp, f.(p) # 0. On the other hand, one may write Wi W weuseitlog Iz

B . conventional mode-matching method discussed in Part 1l of this
fa(p) = Fa(wr,p), wherew, is the resonant frequency of the aper [12].

mgy associated with. Therefore, according to (21), one ma)P In the so-calledE- and H-field formulation, Harrington
obtains(a,a) in terms of the assumeB- and H-field distri-

( dfo ) _ ( 0Fa> -0 22) butions, respectively. Whereas in the mixed-field formulation
dp ) ,—o 9 ) ,—o ' (a, a) is obtained in terms of botR- andH-field distributions.

which states that,, (p) defined by (23) witht = 0 is stationary
aboutp = 0.

From the above considerations, one may end up with the fol-
lowing lemma.
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In either case, one may show thahif= c + pe for a fixede e.g.,A; is changed t4; + p. Therefore, the correct field re-

defined at the resonant frequency, we have duces to the approximate fieddsuch thah = c+pv;. Treating
v; as an error field, one may see that (26) and (27) imply
f(p) £ {c+pe.c+pe) o (ju.)"D(p) + N(p)  (26) o _ [de+pvise+pvi)
B |: dp L,:o

wheren = 2 for E- or H-field formulation andn = 1 for

mixed-field formulation.D(p) and N (p) are energy-type inte- (c+pvi,c+pvy) — (c,c)

grals and will be defined later. In either case, we have frat) P
0<C7 C> A <37 a>
£(0) = (jw,)"D'(0) + N'(0) =0 (27) = o4, [ o4 | (31)
p=
or
o _(_j)nN/(O) (28) Where we have used + pv; = S AnVa + (Ai + p)vi.
" D(0)° Moreover, as indicated in (31)¢, c) is obtained from(a, a) by

replacingE® and/orH* with E¢ and/orH¢, respectively. The
Onthe other hand,(0) = 0 = (jw,)" D(0)+N(0). Therefore, condition[(d/dp)(c+pvi,c+pvi)]p=0 =0,(i = 1,2,...,N)
or its equivalent(9/0A;){c,c) = 0,(: = 1,2,...,N) im-
plies{c,v;) + (vi,c) = 0,(: = 1,2,..., N). Using the sym-
metric character of the reaction, one may end up 2fth v;) =
0,(: =1,2,...,N) or

?

w, = —(—j)nm- (29)

By using (26), if one defineg"w"(p)D(p) + N(p) = 0, we

N N

havew(0) = w, and <Z Anvn,vi> = ZAn(Vn,vi) =0, 1=1,2,...,N

n An NV (P) "~ " (32)

w"(p) = =(=J) Dip)’ (30)

which leads to a system oV homogeneous linear equa-

Now one may easily show thatdw™/dp),—o = 0. tions for the unknown expansion coefficientsi,’s.
This fact can be argued by noting that, from (28) anBrom the above considerations, one may end up with
(29), we haveN’(0)/D’(0) = N(0)/D(0) and, there- two different, but equivalent approaches in setting up a
fore, N'(0)D(0) — D’(0)N(0) = 0, which means that system of N homogeneous linear equations i,’s. In
(dw™/dp),=0 = 0. This result is expected and we havéhe first approach the linear equations are of the form
just used a more straightforward way to prove the stationaf®/dA;){(c,c) = 0,(¢ = 1,2,...,N), whereas in the second
character ofw™(p) aboutp = 0, which was proven earlier one, we havezivzlAn(vn,v,,;) = 0,6 = 1,2,...,N).

by considering a more general case. Recall that, accordidgwever, the former enjoys the advantage that it eliminates the
to the general case, by taking the derivative of the impliciteed of finding the sources of,’s. The reader may verify the
relation j"w™(p)D(p) + N(p) = 0 atp = 0, we will have validity of the above assertions by considering the aforemen-
nj"w"~1(0)w’(0)D(0) + j"w™(0)D'(0) + N’(0) = 0 or tioned example treated by Harrington and applying (31) or (32)
nj"wh =W’ (0)D(0) + (jw,)"D’(0) + N’(0) = 0. Using (27) to obtain the unknown expansion coefficients and the resonant
and noting that, in general)(0) # 0, we havew’(0) = 0. frequencies by a matrix equation. The resonant frequencies
Note thatD(p) and N(p) are defined based on the convenean be obtained by seeking the zeros of the determinant of the
tional reaction. Explicit relations fab(p) and N (p) and their coefficient matrix.
generalized form®,, (p) andN, (p) will be given laterwhenwe  The above are the fundamental principles of variational for-
derive unrestricted variational formulas of the cavity resonatorulation in cavity resonators. The restrictions set forth on the
shown in Fig. 1. class of trial fields depend on the generality of the reaction.
The Rayleigh—Ritz approach is a powerful method, whichhe more general the definition of the reaction, the less restric-
usually comes with the variational formulation. Harrington, btions on the trial fields. Since the reaction defined in the liter-
using the stationary character of'(p), in a typical example ature requires at least the tangential components of the elec-
[10, pp. 339-340] tries to apply the Rayleigh—Ritz method inteic or magnetic field be continuous on any interface, the sta-
cavity resonator by considering only two basis functions for thtienary formulas for the resonant frequency requires at [Bast
field expansion. Due to the quadratic nature of the equations, tireu =V x E¢ in E-field formulation,H* or ¢~V x H® in
unknown expansion coefficients and resonant frequencies &dfield formulation, andE®* or H* in the mixed-field formula-
obtained by solving a system of nonlinear equations. Of coursien satisfy the boundary conditions at any interface within the
this approach cannot be used if one expands the fields in tercasity.
of more than two basis functions. However, (27) is a derivative Since we have generalized the reaction that relaxes the above
of a quadratic equation, which leads to a system of linear equastrictions, one may expect to obtain unrestricted stationary
tions and is more suitable for the Rayleigh—Ritz approach. Moi@mulas for the resonant frequency. Suppose that we are inter-
precisely, letc = ij:l A,v,, whereA,’s are the unknown ested in obtaining th&-field variational formula for the reso-
expansion coefficients. Assume that one of these coefficiemtsnt frequency in the cavity resonator shown in Fig. 1 without
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any restriction on the trial fields. To this end, assume Hat jw 1V x u;;v x Ef ,. By including the necessary surface
is an arbitrary vector field defined inside the cavity. The elecurrents to support the discontinuitiesscdicross the boundaries
tromagnetic fielda set up byE“ at the resonant frequency. and using the generalized reaction, we obtain

can be defined a$l{, = jw;'u;3V x Ef, andJ{, =

—jwrer 2By + jwV x py 3V x Ef 5. Including the nec- j )

essary surface currents to support the discontinuities across théx(p) = (¢ + pe,c + pe)a = o [~wiDa(p) + Na(p)]-

r

boundaries and using the generalized reaction yield (38)
(a,a)e = L [—wag(E“) + N¢ (E“)} (33) Now f,(0) = 0 = —w2D,(0) + N,(0) and, thereforey? =
Wy

N,(0)/D,(0) = ws(0). Moreover, according to the funda-
mental lemmay’,(0) = 0 = —w?2D’,(0) + N/, (0), which indi-

where cates thats? = N/ (0)/D,(0). Therefore,No(0)/Dq(0) =
N!,(0)/D!’,(0) andw?(p) defined by (37) is stationary about
NE (Ea) _ / /‘i% (V x E‘f_rz) . (v % Ei’a)dv p = 0. It should be noted that the stationary character of (36)
Vi+Vz can be proven directly by showing that

+2/ p 'V x Ef x E{ - fis ds
z

. d d
) ) —w? [—Dg (EC—I-pES)} + {—N;' (E°+pE°) =0.

+2 / py -V x E5 x Ef - (—ny)ds dp p=0 dp p=0

JXe (39)
+2/ 1y 'V x Ef x E§ - fig ds

7S To prove (39) directly, one should use the identity A x B) =
+ / (uflv x BY 4 py 'V x Eg) B.-VxA—A.VxB andnote that w? D¢ (E°)+ N2 (E°) = 0.

Jz; . . h Lo
An interesting feature of the unrestricted variational formula-
x (E‘{ — E;) Sy ds — / [ga(o—) — 1] tion of cavity resonators is its dependencendn) and, in other
Jx; words, its nonuniqueness character. As can be read from (34),

X (ul—lv x BY — py 'V x Eg) the term/¢ (E¢) 2 s, [2a(0)=1)(u7 'V XEf —puy ' VX EE) x

(E{—E$)-nyx ds depends on(o) and the integrand is propor-
tional to the products of the differences of fields on both sides
D(E*) = / e12B{ 5 - Ef ,dv (35) of the interface. In fact, by defining, (p) 2 IS (E€ 4+ pE®),

VitV ' whereEF° is an arbitrary, but fixed vector field, and noting that
the correct resonant field satisfies the boundary conditions, we
and we have used the identfy- (A x B) = B-V x A — A havel,(p) = p? [;, [2a(0) = 1)(7 'V x E — pi5 'V x E§) x
V x B. Note thatD¢,(E®) is independent of. (E§ — ES) - iy, ds. Therefore,l,,(0) = I/,(0) = 0 for any
By setting(a,a), = 0 and changingv, 0 w,,w, is de- «(c), and sincel¢(E®) is an additive term inV<(E®), (39)
fined as a function cE® by an implicit relation-w2 DS (E®) +  also holds for anyx(o). If a(o) = 1/2 or, if the tangential

x (B} — ) - fin ds (34)

NZ(E™) = 0 or explicitly as components of eitheE® or 4~V x E® is continuous across
Y, IS(E*) vanishes. It is also interesting to note that, in the
, NE(EY) E-field formulation, as expressed by (36), no surface integral
Wy = : (36) t over the surface of a perfect tic conductor. A
*~ De(BE%) is present over the surface of a perfect magnetic conductor. As

expected, for restricted field distributions, this generalized vari-

To prove (36) is stationary about the correct resonant field, Rfonal formulation reduces to those special ones given by Har-
E® = E°4pE°, whereE* is the electric-field distribution of the rington. Strictly speaking, letl( - ) be an operator when acting

correct resonant field andE* is an arbitrary, but fixed vector on a surface gives its area. It can be seen that under special cases

— — _ a —1 a
field defined within the cavity. Substituting f& into (36), one WhereA(>.) = A(%,,) = A(S) = 0 andE® or =V x E
may definew? as a function of as follows: meets the continuity conditions acrass, the variational for-

mulas reduce to those given by Harrington. Under these special

conditions,D(p) and N (p), used in our earlier discussion, will
(37) be the reduced forms db,(p) and N, (p), respectively.

In a similar fashion, théd-field variational formulation of

the cavity resonator shown in Fig. 1 can be obtained without
whereN,, (p) 2 NS (E€ 4+ pE°) andD,(p) 2 D¢ (E° + pE°). any restriction on the trial fields. L& be an arbitrary vector
According to the earlier discussions, vanishing the derivative ¢ld, which sets up the electromagnetic fieldat the resonant
(37) atp = 0 is a sufficient condition fow? , defined by (36), to frequencyw, by Ef , = —jwr_leiév x Hf , andM7, =
be stationary about the correct resonant field distribuBONTo  —jw,. i1 s H{ 5 + jw 'V x €73V x H{,. By including the
this end, we define the electromagnetic fieldet up byE® at necessary surface currents to support the discontinuities across
w, asHf , = jw;luiév x Ef , andJ{, = —jwrc12E7 , + the boundaries and obtainirg, a),, setting(a, a), = 0, and




SHAMS-ZADEH-AMIRI et al: GENERALIZED REACTION AND UNRESTRICTED VARIATIONAL FORMULATION OF CAVITY RESONATORS—PART | 2487

changingw,. to w,, the unrestricted variational formula for theFig. 1. These vector fields define the electromagnetic field
resonant frequency becomes at the resonant frequenay. if one considerdMj, = —V x
N}L(Ha) E%Q — jwrﬂl,ZH‘iz-/Jiz =V x H?;Z — jw,ﬂelngiZ? and the
2=/ (40) necessary surface currents to support the discontinuities across
Di(H®) the boundaries. Therefore, with this procedure, the generalized
reaction can be obtained in terms of arbitrary vector fidds

w,

where
andH® as follows:
N’“‘H“:/ *1(V><H“)-(V><H“ )d
a( ) Vit Vi 61,2 1,2 1,2 v <a7 a)ﬂ _ ijD:ih (Ea7Ha) + N(ih(Ea, Ha) (43)
+ 2/ Eflv x HY x HY -nx ds where
P2
+ 2/ 651V x HE x H} - (—iy) ds NM(E*, HY)
o - / (E;{Q VX HY, + HY, -V x E;Q)dv
—1—2/ &'V x Hy x H - fig ds JVi+Ve
Sm +/ (E‘;xH‘;—E;xH;)-ﬁEdS
+ / (7'V x Hi + 'V x Hy) S
= —/ (ngH;ﬂ—ngHg)-ﬁEds
x (Hi —Hg) s ds + / [2a(0) — 1] S
J 35
+/ ES x HY - i ds—/ E2 x HY - g ds
x (617 x Hf - 'V x Hy) s, 2 RITETT [ T RS
x (Hi — H3) - s ds (41) +/E (E$ x Hf — Ef x H3 ) - g ds
Dh(H®) = / IS < U < L (42) + / [20(c) — 1] (Eg - Eg) X (Hg - Hg) fs ds
,71 +"f2 Zz

In the H-field formulation, as expressed by (40)-(42), no sur- (44)

face integral is present over the surface of a perfect electric cokdy (E*, H")
ductor, and like theE-field formulation, theH-field formula- ( a a a a )

SO . ' = Hf, -H}, —€12E{, -E{,)dv. 45
tion is not unique and depends afv). It can also be seen that, /VIJFV2 pa2Hiy - Hiy = a2l By, dv. (49)
in special restricted cases, the generalifefleld formulas re- i . _ i
duce to those given by Harrington. It is interesting to note thiP!lowing the same reasoning used in theand H-field for-
duality applies t-field andH-field formulations of the cavity Mulations, it can be shown that
shown in Fig. 1. More precisely, tiHd-field formulation can be _Ngh(E*,H?)

obtained from theéE-field formulation by the following trans- Wa =

=1J eh a a (46)
formations: Dg (E H )

is stationary about the correct resonant field. In this case, by

E} HY . -
12 7 H2 fixing E¢ andH® and defining,, (p) 2 N¢(E¢ + pE¢, He +
K12 = €12 pH) and D, (p) £ D' (E° + pE¢, He + pH®), it suffices to
Ye = X show that
Se — S, (p) = j N, (p) (47)
a(o) = 1 —a(o). WalP) = JDa(p)
In a dual fashion, th&-field formulation can be obtained fromis stationary about = 0.
the H-field formulation by the following transformations: In this section, based on the degenerate character of general-
. . ized reaction, we have developed a systematic method for ob-
Hi, — Ei, taining unrestricted variational formulas for cavity resonators
€12 — [1,2 and derived various variational formulas for an arbitrary, but not
Yo — B simple resonant structure shown in Fig. 1.
Sm — Se

IV. NUMERICAL RESULTS
a(o) = 1 - a(o). : . . :
In this section, we apply the formulation developed in the pre-
It should be emphasized that duality does not applltfield ceding section to some physical structures. In all formulas, we
andH-field formulations if the cavity walls or its interior bound-seta = 1/2. In the first example, we obtain the approximate
aries are made of only one type of perfect conductor. resonant frequencies of a rectangular cavity with a cylindrical
To obtain the mixed-field variational formula, we assume adielectric rod in it. The length of the rod covers the full height
bitrary vector fieldsE* and H* within the cavity shown in of the cavity with the cross section shown in Fig. 2. We have
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4
~ ’,’ Height =4 cm

Fig. 2. Cross sections of rectangular and cylindrical cavity resonators with a z
cylindrical dielectric rod inside them.

TABLE |
COMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF A
RECTANGULAR CAVITY OBTAINED BY DIFFERENT APPROXIMATE METHODS

Mode [ HFSS | Cylinder | E-field | H-field | Mixed field | Errorcyiinder | EITOTH field i
TM, | 1.303 |1.1210 1.2433 | |1.2778] | 1.2668 -14.0% -2.0% X
TE, |2.330 |2.2330 2.2880 ||2.2908 | | 2.2900 -4.2% -1.7% |
HE,, |2.0145 | 1.939 1.9504 |[2.0303] | 1.9896 -3.7% 0.8% h |

used the resonant fields of a cylindrical cavity surrounding the
rectangular one as the trial fields. The cross section of the cylin-
drical cavity is also shown in Fig. 2. The results for thi&l,
TEq, andHE;; modes are shown in Table I.

We have also included the simulation results obtained by An-

0
soft HFSS as areference. The last two columns show the relative T
errors of the cylindrical cavity approximation and tHefield . r, .
formulation with respect to the HFSS results, respectively. )

Since the dielectric rod covers the full height of the cylin- _ o _ o
drical cavity, this cavity becomes a two-dimensional resonatap._t& DR with a support inside a: (a) rectangular cavity and (b) cylindrical
. . avity.
for the TM, mode, and this mode is the fundamental modce y
of the cavity. For this special structure, the cylindrical surface ) L
r = 1 is equivalent to the surface; in the general cavity struc- 'S not the case for the energy stored in the magnetic field. There-

ture shown in Fig. 1. However, since the dielectric rod covers tHy® We > Wi andwy, > w.y1. For these three different cases,

full height of the cavity, the trial fields obtained by the Cy“n_theH—fieIdformulation gives the best results and the results ob-

drical cavity approximation meet the continuity conditions offin€d by the mixed-field formulation are also better than those
3. Therefore, the surface integral o vanishes. Moreover, OPtained by the-field formulation. , ,

in the H-field formulation, as expressed by (40)—(42), no sur- N the second example, we have considered a DR with a sup-
face integral is present over the surface of a perfect electric cH't inside a rectangular box. The radius of the support is the

ductor and, hence, over the cavity walls shown in Fig. 2. Thers@Me as that of the resonator. The top view of the resonator
fore. theH-field formulation reduces to is illustrated in Fig. 3(a). Like the previous example, we have

used the resonant fields of a cylindrical cavity surrounding the
5 5 We rectangular box as the trial ones. The cross section of the cylin-
Wh = Yoyt drical cavity is shown in Fig. 3(b). The trial fields have been
obtained via the radial mode-matching method [4], [6]. In the
wherew.y is the frequency obtained by the mode-matchingadial mode-matching method, the cylindrical cavity is divided
method in the cylindrical cavity¥, and¥}, are the total electric into two radial parallel-plate waveguidés < r < r; and
and total magnetic energies of the trial fields in the rectangular < r < r,. We then expand the fields in terms of the modes
cavity, respectively. For all modes, because of the presencenbfeach section and, by matching the boundary conditions at
the dielectric rod of high dielectric constant, the energy stored= r;, the resonant frequencies and the unknown coefficient
in the electric field is highly confined within the rod and only aof each mode in the field expansion can be obtained by a matrix
few percent of the electric energy is outside of it. However, thesjuation.
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TABLE I
VARIOUS DIMENSIONS (IN CENTIMETERS) AND DIELECTRIC CONSTANTS OF A
DR AND A SUPPORTINSIDE A RECTANGULAR CAVITY

! T2 hy hy h €r1 €r2
0.8305 | 1.795 | 0.6985 | 0.5537 | 2.3368 | 1.0 | 38.0

TABLE 1l
COMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF A
SUPPORTEDDR INSIDE A RECTANGULAR CAVITY SHOWN IN FIG. 3
& THAT ARE OBTAINED BY DIFFERENTAPPROXIMATE METHODS

Number of modes [ Cylinder | E-field | H-field | Mixed-field | Errorcylinder | BITory.iela
1 3.4074 | 3.4593 | [3.4790 3.4697 -4.6% -2.59%
2 3.4252 | 3.4734 | [3.4841 3.4791 -4.10% -2.45%
4 3.4627 | 3.5072 | [3.5090 3.5084 -3.05% -1.75%
8 3.4659 | 3.5102 |[3.5114 3.5111 -2.96% -1.69%

It should be emphasized that the tangential components 0f
the electric and magnetic fields obtained by a finite number

expressions is independent of the behavior of the electric and
magnetic fields inside a cavity. Another distinguishing feature
of this new formulation is its nonuniqueness character, if the tan-
gential components of both electric and magnetic fields are dis-
continuous across some boundaries inside the cavity. All these
formulas reduce to those conventional ones in the literature if at
least the electric or magnetic field satisfies the boundary condi-
tions inside the cavity.

The applicability of the formulas that give the approximate
frequency in terms of the trial fields becomes limited if the
complexity of the structure increases. In such cases, using the
Rayleigh—Ritz method is more practical. Under special cases
where the trial fields are not supported by any volume sources,
the frequency is not present explicitly in the variational for-
mulas. Application of the Rayleigh—Ritz method to a special
form of these so-called implicit formulas with = 1/2 re-
sults in the generalized mode-matching method. In this gener-
8lized formulation, one may relax the orthogonality and some

modes in the radial mode-matching method cannot be Contgb'ecific boundary conditions that should be met by the basis

uous on the surface= r;. Therefore, this surface is equivalenrr
to X; in the general model of the cavity resonator illustrated i
Fig. 1. Similarly, if one uses afinite number of modesinthe axiérl
mode-matching method [4], [5] to obtain the resonant fields

unctions across some surfaces inside the cavity. Hence, we call
P a nonorthogonal and free-boundary mode-matching method.

e details of this new formulation is addressed in Part Il of this
aper [12].

the cylindrical cavity, the tangential components of the fields

will be discontinuous along the axis of the cavity:at h, and
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